The University of Alabama at Birmingham (UAB) Department of Physics

PH 461/561 - Classical Mechanics I - Fall 2005

Assignment # 10 Due: Tuesday, November 29

1. A particle of mass *m* moves in one dimension under a restoring force -kx, a linear resistance $-b\dot{x}$, and a time-dependent force $F_0 \cos \omega t$. The quantities

k, b, F_0 , and ω are all positive constants, with $k = b^2/4m$.

- (a) Find x(t) and show that it may be understood as the sum of a *transient term* that vanishes for $t \to \infty$, and a *steady state term* that dominates the motion when $t \to \infty$.
- (b) Graph the behavior of the <u>amplitude</u> of the *steady state term* as a function of the frequency ω , for various values of the damping factor $\gamma \equiv b/2m$.
- (c) Discuss the effect of the damping factor γ on the sharpness of the resonance.
- (d) Graph the behavior of the <u>phase difference</u> between the *steady state term* and the force $F_0 \cos \omega t$ as a function of the frequency ω , for various values of the damping factor γ .
- (e) Discuss the physical meaning of the phase difference dependence on ω , with particular attention to the cases when $\omega \to 0$ (low frequency regime) and $\omega \to \infty$ (high frequency regime).
- 2. Given a force $\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$, with components

$$F_{\rm x} = a {\rm y}^2 {\rm z}^3$$
 and $F_{\rm y} = 2a {\rm xy} {\rm z}^3$

- (a) Determine a component F_z such that the force is conservative.
- (b) In this case, calculate the potential V(x,y,z) such that V(0,y,z) = 0.
- 3. A particle of mass *m* moves in three dimensions under a time-dependent force whose components are

$$F_{\rm x} = a$$
, $F_{\rm y} = bt$, $F_{\rm z} = ct^2$

where *a*, *b*, *c* are positive constants and *t* is the time. Provide the following:

- (a) A discussion of the degrees of freedom of the system.
- (b) An identification of any constraints to the motion of the particle.
- (c) The differential equations of motion in a suitable coordinate system. Is this force conservative? Why?
- (e) Assuming that at t = 0 the particle had the following initial conditions: $r_0=0$ and $v_0 = v_{0x}i$, determine the motion of the particle (i.e., Find r(t))

- 4. A particle of mass *m* moves in three dimensions as it is subjected to the force $\vec{F} = -mg\vec{k}$, where *g* is the acceleration due to gravity. Neglecting air resistance provide the following:
 - (a) A discussion of the degrees of freedom of the system.
 - (b) An identification of any constraints to the motion of the particle.
 - (c) The differential equations of motion in a suitable coordinate system.
 - (d) Find the motion (i.e., solve the equations of motion) assuming initial conditions $\vec{r}_0 = 0$, $\vec{v}_0 \neq 0$.
 - (e) Find an analytical expression for the trajectory of the particle.
 - (f) Find, in terms of the given initial conditions, the maximum height the particle reaches.
 - (g) Find the range of the particle (i.e., the maximum linear distance the particle reaches on the *x*-*y* plane).
- 5. Re-work problem 2 above assuming that in addition to the force of gravity \vec{F} , the particle is also subject to a linear air resistance $\vec{F}_{air} = -b(d\vec{r}/dt)$.
- 6. Consider a particle of mass *m* in three dimensions, subject to a restoring force that may be expressed in Cartesian coordinates as $\vec{F} = F_x \vec{i} + F_y \vec{j} + F_z \vec{k}$, where

 $F_x = -k_x x$; $F_y = -k_y y$; $F_z = -k_z z$. (The positive constants k_x , k_y , k_z may or may not be equal).

- (a) Find an expression for the potential energy of the particle.
- (b) Find an expression for the total mechanical energy of the particle.
- (c) Is this force conservative? Why?
- 7. A particle of mass *m* is constrained to move in two dimensions under the force $\vec{F} = -k\vec{r}$ where *k* is a constant and \vec{r} is the position vector of the particle with respect to the origin. Provide the following:
 - (a) A discussion of the degrees of freedom of the system.
 - (b) An identification of any constraints to the motion of the particle.
 - (c) The differential equations of motion in a suitable coordinate system.
 - (d) Find the motion (i.e., solve the equations of motion) assuming initial position $\vec{r_0} = y_0 \vec{j}$ and initial velocity $\vec{v_0} = v_0 \vec{i}$, where \vec{i}, \vec{j} are the unit vectors in the *x*, *y* directions.
 - (e) Find an analytical expression for the trajectory of the particle.

- 8. A particle of mass *m* is constrained to move in two dimensions under the force $\vec{F} = -(k_x x)\vec{i} - (k_y y)\vec{j}$ where k_x , k_y are positive constants. The particle is launched with initial conditions $\vec{r_0} = x_0\vec{i}$ and $\vec{v_0} = v_0\vec{j}$. Find x(t), y(t), and plot the particle trajectory for the three cases:
 - (a) $k_{y} = k_{x}$
 - (b) $k_v = (4/9)k_x$
 - (c) $k_v = (1/\pi)k_x$
 - (d) Discuss the differences and similarities of the trajectories you plotted in parts (a), (b), (c).

Notes:

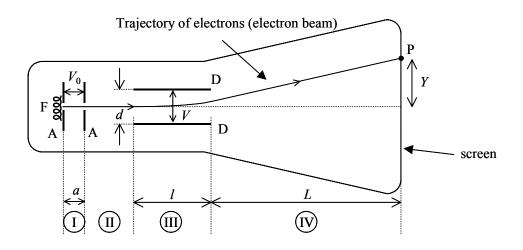
- I. Make sure you find the constants in the expressions for x(t) and y(t) in terms of the given initial conditions.
- *II. The trajectories for parts (b) and (c) cannot be expressed in analytical form. Generate numerical plots of these trajectories.*
- 9. A particle of mass *m* and charge *q* moves under the effect of a static and uniform electric field that points in the positive *z* direction (i.e., $\vec{E} = E_0 \vec{k}$). It the particle has initial position $\vec{r_0} = (x_0, y_0, z_0)$ and initial velocity $\vec{v_0} = (\dot{x_0}, \dot{y_0}, \dot{z_0})$, find its motion.
- 10. A particle of charge q and mass m is at rest in a magnetic field $\vec{B} = \vec{k}B_0$. At time t = 0, an oscillating electric field $\vec{E}(t) = \vec{j}E_0 \sin \omega t$ is turned on.

a) Determine and discuss the motion of the particle.

- b) Determine and discuss the motion of the particle when $\omega = qB_0/m$
- 11. The figure in the next page shows the schematic of a cathode ray tube. Electrons (mass *m*, charge *e*) generated at the heated filament F are subject to controlled electrical forces in an evacuated chamber and hit the phosphor screen at a desired point P. Constant voltages V_0 and V are applied to plates AA and DD, respectively. Assume that:
 - (a) Upon emission, electrons are at rest in the vicinity of plate A next to filament F.
 - (b) Electrical forces in region II are negligible
 - (c) The magnitude of the force on a particle with charge q moving between parallel plates separated by a distance r and subject to a potential difference U is given by:

Force =
$$\frac{qU}{r}$$

(d) The direction of this force is perpendicular to the plane of the plates.



- a. Find the horizontal and vertical components of the electron acceleration in regions I, II, III, and IV.
- b. Find the horizontal and vertical components of the electron velocity in regions I, II, III, and IV.
- c. Calculate the vertical deflection *Y* on the tube screen with respect to the initial direction of propagation of the electrons.